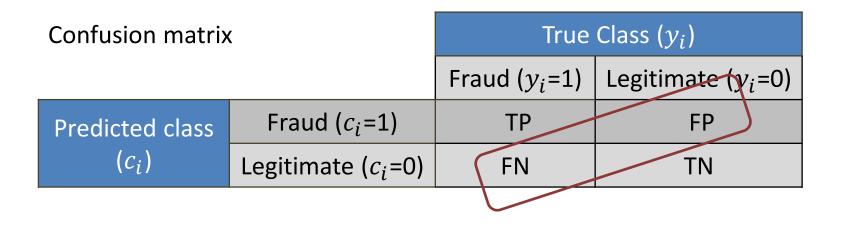


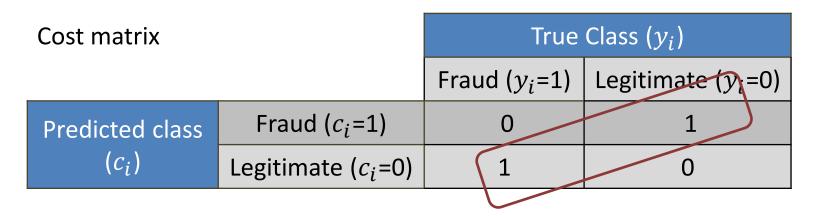
Example-Dependent Cost-Sensitive Credit Scoring

Alejandro Correa Bahnsen Luxembourg University

- Classification, in the context of machine learning, deals with the problem of predicting the class (y) of set of examples given their features (x)
- Minimize the misclassification



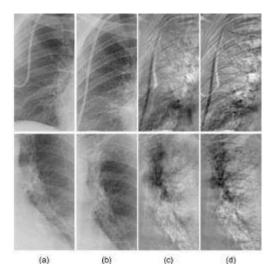
 However, it is usually assumed that all errors leads to the same cost



• Unrealistic in many real-world applications

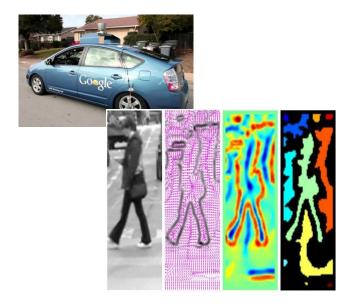
- FP = Sending a good email to the Spam folder
- FN = Failing to detect a spam email

- FP = Declining a good transaction
- FN = Accepting a fraudulent transaction



- FP = Wrongly detecting a tumor
- FN = Failing to detect a tumor

- FP = Confusing a pedestrian with the background
- FN = Failing to detecting a pedestrian



Cost matrix		True Class (y_i)		
		Fraud (y_i =1)	Legitimate (y_i =0)	
Predicted class	Fraud (c_i =1)	0	C_FP_i	
(<i>c</i> _{<i>i</i>})	Legitimate (c _i =0)	C_FN_i	0	

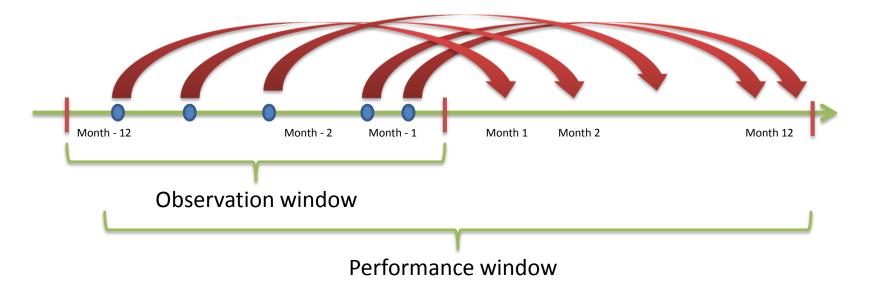
- In practice applications are cost-sensitive
- Furthermore, the cost varies between examples

Cost matrix		True Class (y_i)		
		Fraud (y_i =1)	Legitimate (y_i =0)	
Predicted class	Fraud (c_i =1)	0	C_FP_i	
(<i>c</i> _{<i>i</i>})	Legitimate (c _i =0)	C_FN_i	0	

- In practice applications are cost-sensitive
- Furthermore, the cost varies between examples

- Mitigate the impact of credit risk and make more objective and accurate decisions
- Estimate the risk of a customer defaulting his contracted financial obligation if a loan is granted, based on past experiences
- Different ML methods are used in practice, and in the literature: logistic regression, neural networks, discriminant analysis, genetic programing, decision trees, among others

• Construction of a credit score



- Applications during the observation window
- Y=1 if loan has days past due > 90 once during the 12 months after the application

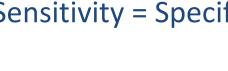
- Default probability $\hat{p} = P(y = 1|x)$.
- Classification c(t) = 0, if $\hat{p} < t$
- Where t is the probability threshold

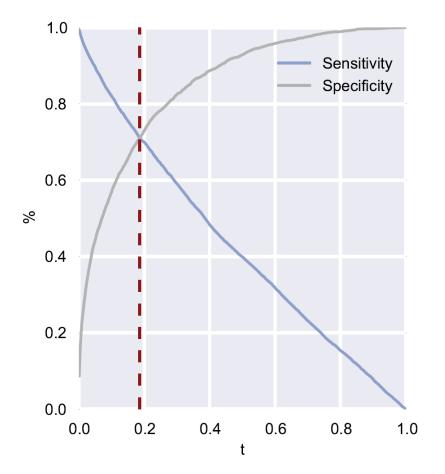
Defining the threshold

Credit Scoring

Where
 Sensitivity = Specificity

• Sensitivity is the true positive rate and specificity one minus the false positive rate.





- Evaluation of credit score models
 - Brier score
 - AUC
 - KS
 - F1-Score
 - Misclassification
- Nevertheless, none of these measures takes into account the business and economic realities that take place in credit scoring. Different costs that the financial institution has incur to acquire customers, or the expected profit due to a particular client, are not incorporated in the evaluation of the different models

• Evaluation of credit score models

 Table 1.
 Credit scoring example-dependent cost matrix

			True Class (y_i)
		Positive	Negative
Predicted	Positive	0	$C^a_{FP_i} + C^b_{FP_i} + C^c_{FP_i}$
Class (c_i)	Negative	$Cl_i \cdot lgd$	0

- Correct classification costs are assumed to be 0
- C_FP = losses if customer i defaults
- Cl_i is the credit line of customer i
- Lgd is the loss given default. Percentage of loss over the total credit line when the customer defaulted

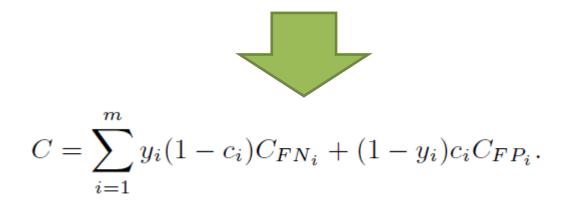
- Evaluation of credit score models
- C_FN = $C^a_{FP_i} + C^b_{FP_i} + C^c_{FP_i}$
- $C^a_{FP_i} = r(Cl_i, int_{r_i}, n_i, int_{cf})$
- loss in profit by rejecting what would have been a good customer
- Where:
 - Int_r_i = interest rate of customer I
 - Int _cf = Financial intitution cost of funds
 - n_i = term of loan I
- Calculation of r in the appendix.

- Evaluation of credit score models
- C_FN = $C^a_{FP_i} + C^b_{FP_i} + C^c_{FP_i}$
- $C_{FP_i}^b = -r(Cl_{avg}, int_{r_i}, n_i, int_{cf}) \cdot (1 \pi_1)$
- $C_{FP_i}^c = Cl_{avg} \cdot lgd \cdot \pi_1$
- assumption that the financial institution will not keep the money of the declined customer idle, but instead it will give a loan to an alternative customer
- Whom as an average customer has default probability equal to the prior default probability π_1

• Evaluation of credit score models

Table 1. Credit scoring example-dependent cost matrix

			True Class (y_i)
		Positive	Negative
Predicted	Positive	0	$C^a_{FP_i} + C^b_{FP_i} + C^c_{FP_i}$
Class (c_i)	Negative	$Cl_i \cdot lgd$	0



Example-Dependent Cost-Sensitive Models

- Bayes minimum risk
 - decision model based on quantifying tradeoffs between various decisions using probabilities and the costs that accompany such decisions
- Risk of classification

$$R(c_{i} = 0|x_{i}) = C_{TN_{i}}(1 - \hat{p}_{i}) + C_{FN_{i}} \cdot \hat{p}_{i}$$
$$R(c_{i} = 1|x_{i}) = C_{TP_{i}} \cdot \hat{p}_{i} + C_{FP_{i}}(1 - \hat{p}_{i})$$

• If
$$R(c_i = 0|x_i) \le R(c_i = 1|x_i)$$
 then $c(t) = 0$,

• Example-dependent threshold

$$t_{BMR_i} = \frac{C_{FP_i} - C_{TN_i}}{C_{FN_i} - C_{TN_i} - C_{TP_i} + C_{FP_i}}$$

10. II

Example-Dependent Cost-Sensitive Models

- Bayes minimum risk
- Calibration of probabilities
 - BMR method suffers when the estimated probabilities are not well calibrated
- Probabilities are calibrated using the ROC convex hull methodology described in the appendix

• Threshold optimization

$$C = \sum_{i=1}^{m} y_i (1 - c_i) C_{FN_i} + (1 - y_i) c_i C_{FP_i}.$$

Depends on c which depends on t

•
$$c(t) = 0$$
, if $\hat{p} < t$

• Optimal threshold that minimizes the cost

$$t_{mc} = \operatorname*{argmin}_{t} C(t).$$

Experiments

- Two publicly available datasets
 - Kaggle Credit dataset
 - PAKDD Credit dataset
- Contains information regarding customers income and debt from which the credit limit can be inferred, see appendix.

Parameter	Kaggle	PAKDD
	Credit	Credit
Interest rate (int_r)	4.79%	63.0%
Cost of funds (int_{cf})	2.94%	16.5%
Term (n) in months	24	24
Loss given default (lgd)	75%	75%

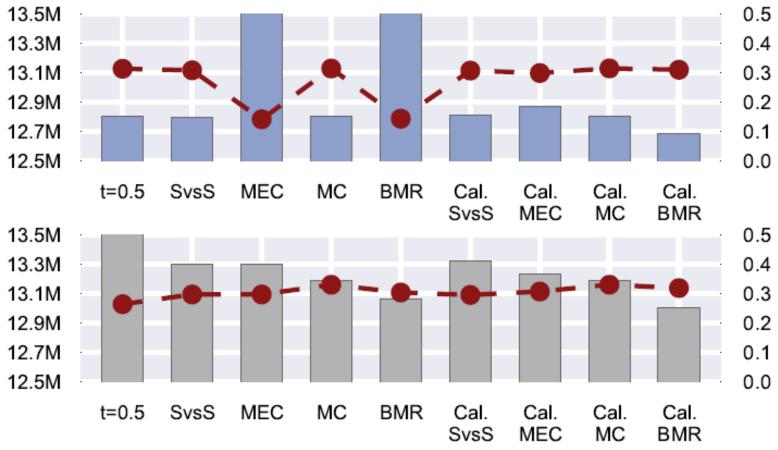
Table 2.Model parameters

Experiments

- Using Random Forest to estimate the probabilities
- Databases partitioned in training, validation and testing
- Each of them contain 50%, 25% and 25% of the total examples, respectively
- Under-sampled dataset
- Under-sampling of the negative examples is made in order to have a balanced class distribution on the training set

Experiments – Results Kaggle Credit

• Using Random Forest to estimate the probabilities



Kaggle Credit dataset

securityandtrust.lu

Experiments – Results Kaggle Credit

• Using Random Forest to estimate the probabilities

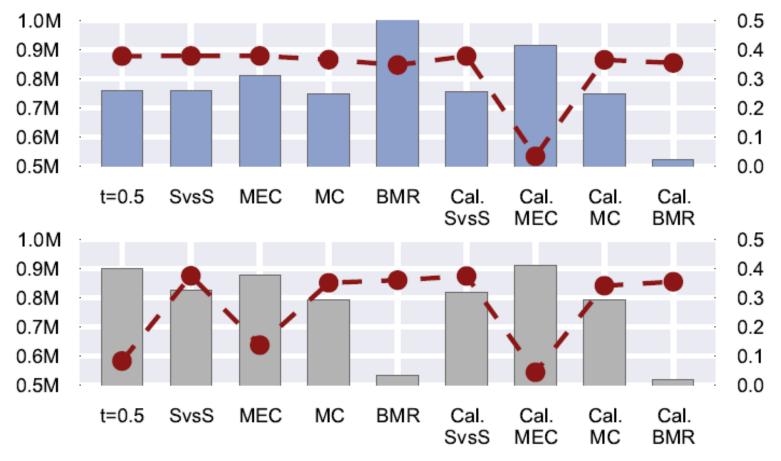
Kaggle Credit dataset

	Under-sampled				Training			
Method	Brier	Miscla	F_1 -Score	Cost	Brier	Miscla	F_1 -Score	Cost
t = 0.5	0.1596	0.2240	0.3136	12,805,180	0.0523	0.0657	0.264	21,465,633
t_{SvsS}	0.1596	0.2325	0.3085	12,798,294	0.0523	0.2420	0.2969	13,299,471
t_{ec}	0.1596	0.8062	0.1421	23,934,682	0.0523	0.2420	0.2969	13,299,471
t_{mc}	0.1596	0.2234	0.3144	12,805,749	0.0523	0.1941	0.3301	13,191,213
t_{BMR_i}	0.1596	0.7897	0.1440	23,680,770	0.0523	0.2239	0.3036	13,061,081
$Cal \cdot t_{SvsS}$	0.0528	0.2339	0.3074	12,815,640	0.0519	0.2447	0.2954	13,319,945
$Cal \cdot t_{ec}$	0.0528	0.2484	0.2991	12,874,154	0.0519	0.2281	0.3069	13,234,844
$Cal \cdot t_{mc}$	0.0528	0.2228	0.3147	12,803,906	0.0519	0.1941	0.3301	13,191,213
$Cal \cdot t_{BMR_i}$	0.0528	0.2158	0.3103	12,687,521	0.0519	0.1989	0.3187	13,004,645

Experiments – Results PAKDD Credit

LUACTIDUUKS

• Using Random Forest to estimate the probabilities



PAKDD Credit dataset

Experiments – Results PAKDD Credit

• Using Random Forest to estimate the probabilities

PAKDD Credit dataset

	Under-sampled				Training			
Method	Brier	Miscla	F_1 -Score	Cost	Brier	Miscla	F_1 -Score	Cost
t = 0.5	0.2359	0.3955	0.3781	759,720	0.1541	0.2006	0.0830	898,871
t_{SvsS}	0.2359	0.3969	0.3786	761,215	0.1541	0.4013	0.3750	827,266
t_{ec}	0.2359	0.4663	0.3787	810,523	0.1541	0.2049	0.1376	878,585
t_{mc}	0.2359	0.3398	0.3658	746,866	0.1541	0.3102	0.3511	793,888
t_{BMR_i}	0.2359	0.7154	0.3475	1,026,159	0.1541	0.5175	0.3600	534,485
$Cal \cdot t_{SvsS}$	0.1527	0.3913	0.3781	756,714	0.1528	0.3846	0.3744	817,707
$Cal \cdot t_{ec}$	0.1527	0.1994	0.0345	915,892	0.1528	0.1990	0.0444	911,598
$Cal \cdot t_{mc}$	0.1527	0.3405	0.3652	747,720	0.1528	0.2939	0.3411	794,263
$Cal \cdot t_{BMR_i}$	0.1527	0.5142	0.3546	523,276	0.1528	0.5126	0.3547	520,461

Experiments

- Using:
 - Random Forest
 - logistic regression
 - gradient boosting
 - Gaussian naive Bayes
 - extra trees classifiers
- 10-fold cross-validation

Experiments – Results Kaggle Credit

Kaggle Credit dataset

	-	Decrease in cost (%)			Misclassification (%)			
Algorithm	Data	t_{mc}	$Cal \cdot t_{ec}$	$Cal \cdot t_{BMR_i}$	t_{SvsS}	t_{mc}	$Cal \cdot t_{ec}$	$Cal \cdot t_{BMR_i}$
Random forest	u	-0.06 ± 0.17	-0.6 ± 0.35	0.86 ± 0.46	23.25 ± 0.15	22.34 ± 0.69	$24.84{\pm}0.74$	21.58 ± 0.46
Logistic reg.	u	1.24 ± 0.69	0.96 ± 0.71	4.28 ± 0.54	29.73 ± 0.98	21.69 ± 2.05	26.78 ± 1.92	21.26 ± 1.43
Gradient boost.	u	-0.48 ± 0.39	-0.57 ± 0.72	2.22 ± 0.62	22.59 ± 0.12	23.03 ± 1.01	$24.16{\pm}1.09$	20.32 ± 0.57
Naive Bayes	u	$0.34{\pm}0.38$	-0.68 ± 0.49	1.76 ± 0.51	$34.49 {\pm} 0.58$	29.43 ± 2.21	36.06 ± 2.52	29.72±1.26
Extra trees	u	0.02 ± 0.36	$0.06 {\pm} 0.26$	1.03 ± 0.44	$23.97 {\pm} 0.1$	$21.96 {\pm} 0.68$	$23.69{\pm}1.04$	21.78 ± 0.53
Random forest	t	0.81±0.36	0.48 ± 0.38	2.22 ± 0.35	24.2 ± 0.18	19.41±0.89	22.81±1.19	19.89±0.46
Logistic reg.	t	2.23 ± 0.92	1.13 ± 0.54	3.99±1.03	$36.68 {\pm} 0.62$	$26.78 {\pm} 6.58$	36.42 ± 4.59	28.92 ± 4.92
Gradient boost.	t	-0.47 ± 0.48	-0.75 ± 0.56	$1.91{\pm}0.7$	22.41 ± 0.11	21.61 ± 0.91	$23.74{\pm}1.07$	$19.89 {\pm} 0.47$
Naive Bayes	t	2.39 ± 0.51	0.59 ± 0.5	2.17 ± 0.72	$34.47 {\pm} 0.91$	25.55 ± 1.01	32.65 ± 1.11	28.05 ± 0.79
Extra trees	t	1.05 ± 0.54	$0.25 {\pm} 0.79$	$1.4{\pm}0.44$	25.3 ± 0.22	$19.64{\pm}0.78$	$24.17 {\pm} 1.51$	21.29 ± 0.55

Experiments – Results PAKDD Credit

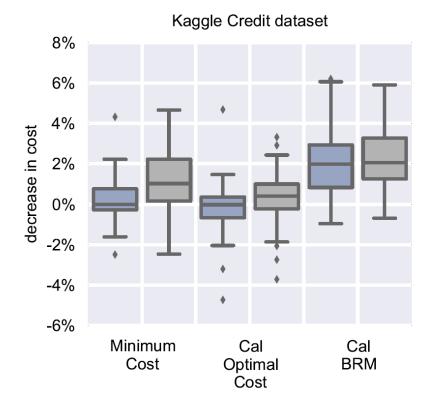
PAKDD Credit dataset

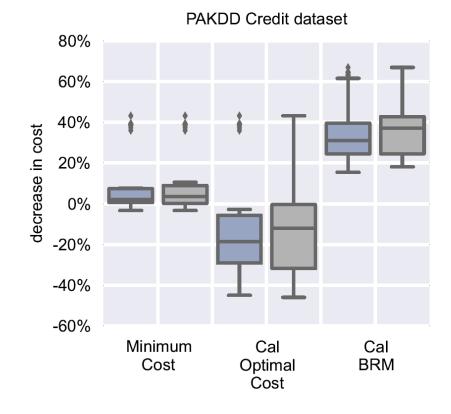
		Decrease in cost (%)			Misclassification (%)			
Algorithm	Data	t_{mc}	$Cal \cdot t_{ec}$	$Cal \cdot t_{BMR_i}$	t_{SvsS}	t_{mc}	$Cal \cdot t_{ec}$	$Cal \cdot t_{BMR_i}$
Random forest	u	$1.84{\pm}0.75$	-20.5 ± 2.8	31.1±1.96	39.69±0.27	33.98 ± 1.15	19.94 ± 0.14	51.42 ± 0.26
Logistic reg.	u	38.8 ± 0.87	38.8 ± 0.87	63.6±0.78	77.67 ± 0.18	19.9 ± 0.16	19.9 ± 0.16	53.67 ± 0.21
Gradient boost.	u	0.17 ± 0.6	-26.6 ± 1.92	27.4±1.56	38.32 ± 0.16	36.73±1.39	$20.04{\pm}0.18$	50.8 ± 0.22
Naive Bayes	u	0.07 ± 0.9	-39.2 ± 1.88	20.5 ± 1.23	40.15 ± 0.29	44.77 ± 1.07	19.9 ± 0.16	52.16 ± 0.24
Extra trees	u	5.14 ± 1.36	-8.44 ± 2.31	36.6±1.53	41.44 ± 0.32	30.17 ± 1.15	$19.98 {\pm} 0.17$	$51.96 {\pm} 0.27$
Random forest	t	$4.0{\pm}1.05$	-10.3 ± 2.21	37.0±1.22	40.13±0.46	31.02 ± 1.62	19.9±0.17	51.26±0.23
Logistic reg.	t	38.8 ± 0.87	38.8 ± 0.87	63.6±0.78	77.67±0.18	19.9 ± 0.16	19.9 ± 0.16	53.67 ± 0.21
Gradient boost.	t	-0.24 ± 0.32	-28.1±2.7	26.6 ± 1.54	37.96 ± 0.31	35.21 ± 1.48	$19.96 {\pm} 0.17$	50.73 ± 0.22
Naive Bayes	t	-0.34 ± 0.83	-39.3±2.19	20.3 ± 0.81	40.23 ± 0.29	44.9 ± 0.92	$19.92{\pm}0.16$	52.3 ± 0.28
Extra trees	t	7.62 ± 0.93	-0.44 ± 1.3	41.4 ± 0.87	$41.73 {\pm} 0.25$	$28.61{\pm}1.17$	$19.92{\pm}0.15$	52.09 ± 0.27

Experiments – Results

SINT securityandtrust.lu

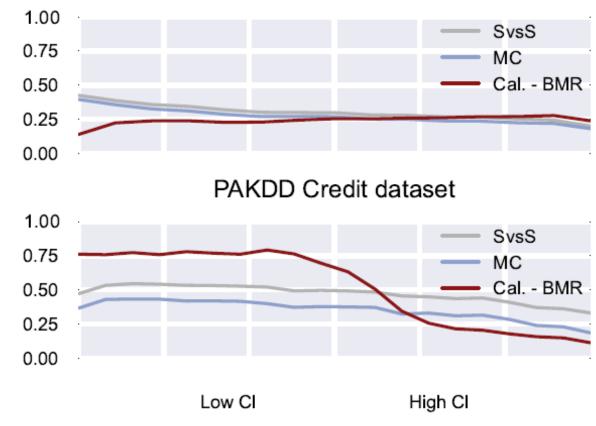
• Comparison of average decrease in cost between algorithms





Experiments – Results PAKDD Credit

 Comparison of the misclassification of the different models against different percentiles the credit limit Cl



Kaggle Credit dataset

- Selecting models based on traditional statistics does not give the best results in terms of cost
- Models should be evaluated taking into account real financial costs of the application
- Algorithms should be developed to incorporate those real financial costs

Thank you!

Contact information

Alejandro Correa Bahnsen University of Luxembourg Luxembourg

al.bahnsen@gmail.com

http://www.linkedin.com/in/albahnsen

http://www.slideshare.net/albahnsen

Appendix

A Calculation of a loan profit

The profit r is calculated as the present value of the difference between the financial institution gains and expenses, given the credit line Cl_i , the term n_i and the financial institution lending rate int_{r_i} for customer i, and the financial institution of cost funds int_{cf} .

$$r(Cl, int_r, n, int_{cf}) = PV(A(Cl, int_r, n), int_{cf}, n) - Cl, \quad (9)$$

with A being the customer monthly payment and PV the present value of the monthly payments, which are calculated using the time value of money equations [15],

$$A(Cl, int, n) = Cl \frac{int(1+int)^n}{(1+int)^n - 1},$$
(10)

$$PV(a, int, n) = \frac{a}{int} \left(1 - \frac{1}{(1+int)^n} \right).$$
(11)

Appendix B Calculation of the credit limit

There exist several strategies to calculate the Cl_i depending on the type of loans, the state of the economy, the current portfolio, among others [1, 15]. Nevertheless, given out lack of information regarding the specific business environment of both datasets, we simply define Cl_i as

$$Cl_i = \min\left(k \cdot Inc_i, Cl_{max}, Cl_{max}(debt_i)\right).$$
(12)

We fix k = 3 since it is the average personal loans request related to monthly income, and Cl_{max} to 25,000 Euros, which is the maximum amount for personal loans without collateral as reported by several financial institutions. Lastly, the maximum credit line given the current debt is calculated as the maximum credit limit such that the current debt ratio plus the new monthly payment does not surpass the customer monthly income. It is calculated as

$$Cl_{max}(debt_i) = PV\left(Inc_i \cdot MP_{min}(debt_i), int_r, n\right), \quad (13)$$

and

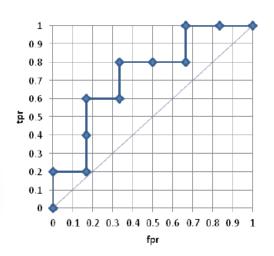
$$MP_{min}(debt_i) = \min\left(\frac{A(k \cdot Inc_i, int_r, n)}{Inc_i}, 1 - debt_i\right).$$
(14)

Appendix

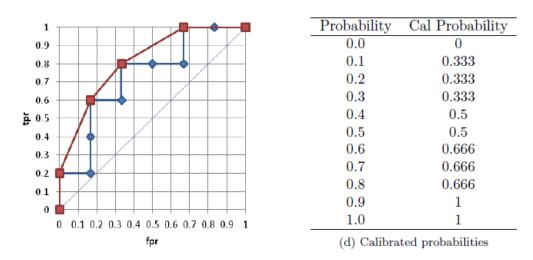
Probability Calibration

Probability	Label
0.0	0
0.1	1
0.2	0
0.3	0
0.4	1
0.5	0
0.6	1
0.7	1
0.8	0
0.9	1
1.0	1

(a) Set of probabilities and their respective class label



(b) ROC curve of the set of probabilities



(c) Convex hull of the ROC curve

Figure 1: Estimation of calibrated probabilities using the ROC convex hull [9].

